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ABSTRACT

The Cancer Genome Atlas (TCGA) provides a rich repository
of whole mount tumor sections that are collected from different
laboratories. However, there are a significant amount of technical
and biological variations that impede analysis. We have developed
a novel approach for nuclear segmentation in histology sections,
which addresses the problem of technical and biological variations
by incorporating information from manually annotated reference
patches with the local color space of the original image. Subse-
quently, the problem is formulated within a multi-reference graph
cut with geodesic constraints. This approach has been validated on
manually curated samples and then applied to a dataset of 440whole
mount tissue sections, originating from different laboratories, which
are typically 40k-by-40k pixels or larger. Segmentation results,
through a zoomable interface, and extracted morphometric data are
available at: http://tcga.lbl.gov.

Index Terms— Nuclear segmentation, Nuclear/Background
classification, H&E tissue section

1. INTRODUCTION

Tissue histology provides a detailed insight into cellularmorphol-
ogy, organization, and tumor heterogeneity. In tumor sections, it
can be used to identify mitotic cells, cellular aneuploidy,and au-
toimmune responses. More importantly, if tissue morphology and
architecture can be quantified on a very large dataset, it will pave
the way for constructing databases that are prognostic, thesame way
that genome-wide array technologies have identified molecular sub-
types and predictive markers. Genome-wide molecular characteriza-
tion (e.g., transcriptome analysis) has the advantage of standardized
tools for data analysis and pathway enrichment, which can enable
hypothesis generation in the underlying mechanism. However, the
protocol (i) provides an average measurement of the tissue biopsy,
(ii) can be expensive, (iii) can hide occurrences of rare events, and
(iv) lacks the clarity for translating molecular signatureinto a phe-
notypic signature. On the other hand, phenotypic signatures, derived
from tissue histology, are hard to compute due to biologicaland tech-
nical variations, but they offer insights into tissue composition and
heterogeneity (e.g., mixed populations) and rare events.

In order to have a robust system for characterizing tissue sec-
tions, it needs to be able to process samples from multiple labora-
tories. The Cancer Genome Atlas (TCGA) offers such a collection,
where scanned samples originate from different laboratories and are
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subject to technical (e.g., fixation, staining) and biological (e.g., cell
type, cell state) variations. The main technical barrier isthat color
composition, in the RGB space, is not consistent across tissue sec-
tions.

It became clear that a hand segmented dictionary will be needed
not only for validation, but also for constructing a model that cap-
tures wide variations in the nuclear staining, both within and across
tissue sections. Accordingly, our approach integrates local and
global image statistics to construct a representation for each pixel
based on the Gaussian Mixture Model (GMM). This representation
is then regularized with the spatial smoothness constraintthrough
the graph cut framework. The net result is a binarized image of blobs
(a single nucleus or a clump of nuclei), which are either validated or
partitioned further through geometric reasoning.

Organization of the rest of this paper is as follows: Section2
reviews previous research; Section 3 describes the detailsof our ap-
proach; Section 4 provides experimental and validation results; and
Section 5 concludes the paper.

2. REVIEW OF PREVIOUS WORK

The main issues that hinder correct nuclear segmentation are tech-
nical (e.g., sample preparation) and biological heterogeneity (e.g.,
cell type). Present techniques have focused on adaptive thresholding
followed by morphological operators [1], fuzzy clustering[2], level
set method using gradient information [3], graph cut methodcom-
bined with seeds detection[4], color separation followed by optimum
thresholding and learning [5], hybrid color and texture analysis that
are followed by learning and unsupervised clustering [6]. It is also a
common practice that through color decomposition, nuclearregions
can be segmented using the same techniques that have been devel-
oped for fluorescence microscopy. However, none of these methods
can effectively address analytical requirements of the tumor charac-
terization. Thresholding and clustering assume constant chromatin
content for the nuclei in the image. In practice, there is a wide vari-
ation in chromatin content. In addition, there is the issue with over-
lapping and clumping of the nuclei, and sometimes, due to thetissue
thickness, they cannot be segmented.

One of the main limitations of the above techniques is that they
are often applied to a small dataset that originated from a single lab-
oratory. Therefore, some of the inherent variabilities areminimized.

3. APPROACH

Our approach consists of two components: classification between
nuclei/background, and nuclear blob partition, as shown inFigure 1.
For classification, we leverage both global and local image statis-
tics, in which global image statistics, in both RGB space andLoG



response space, are extracted from manually selected and annotated
reference patches, and local image statistics are established based
on foreground and background seeds within a local neighborhood
of the image to be segmented. The information above is then con-
densed and expressed in terms of Gaussian Mixture Models. Having
constructed the model, graphcut framework [7] is utilized to classify
nuclear and background content. Finally, delineated blobsare sub-
jected to convexity constraints for partitioning clumps ofnuclei [8].
In the rest of this section, we will discuss the details of ourwork.
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Fig. 1. Steps in Nuclear Segmentation.

3.1. Color transformation: RGB to Blue Ratio

In order to reduce complexities for integrating LoG responses, the
RGB space is transformed to accentuate the nuclear dye. While sev-
eral techniques for color decomposition have been proposed[10, 9],
they are either time-consuming or do not yield favorable outcome as
a result of wide technical variations. Our insight led to thefollowing
transformation from RGB space into the blue ratio space for comput-
ing the LoG responses.BR = 100∗B

1+R+G
× 256

1+B+R+G
, whereB, R

andG are the blue, red and green intensities, respectively. Figure 2
demonstrates the immunity of blue ratio to biological and technical
variation, compared with the method in [9].

In this transformed space, the peak of the intensity distribution
always corresponds to the frequency of occurrence of background
pixels. Therefore, some of false negative or positive LoG responses
can be corrected by a simple comparison to the peak of the intensity
distribution.

3.2. Graph Cut Model

Within the graph cut formulation, an image is represented asa graph
G = 〈V̄ , Ē〉, whereV̄ is the set of all nodes, and̄E is the set of all
arcs connecting adjacent nodes. Nodes and edges correspondto pix-
els (P) and their adjacency relationship, respectively. Additionally,
there are special nodes that are known as terminals, which corre-
spond to the set of labels that can be assigned to pixels. In the case
of a graph with two terminals, terminals are referred to as the source
(S) and the sink (T). The labeling problem is to assign a unique la-
bel xp for each nodep ∈ V̄ , and the image cutout is performed by

(a) (b) (c)

Fig. 2. (a) Original images; (b) Blue ratio images; (c) Decomposition
by [9].

minimizing the energy:

E =
∑

p∈V̄

(

Egf (xp) + γElf (xp)
)

+β
∑

(p,q)∈Ē

Esmoothness(xp, xq)

(1)
whereEgf is the global data fitness term encoding the fitness cost
for assigningxp to p; Elf is the local data fitness term encoding the
fitness cost for assigningxp to p; Esmoothness(xp, xq) is the prior
energy, denoting the cost when the labels of adjacent nodes,p andq,
arexp andxq, respectively;β is the weight forEsmoothness; γ is the
weight forElf . Construction of each of these terms are described as
follows:

3.2.1. Global fitness term

The global fitness is established based on manually annotated refer-
ence images. Let’s assumeN reference images:Ri, i ∈ {1, ...N},
and for each reference image, Gaussian Mixture Models are used
to represent nuclear and background regions in bothRGB space
and Laplacian of Gaussian (LoG) response space, respectively:
GMMk

Nuclei, GMMk
Background, in whichk ∈ {1, ...2N}.

An input test imageI is first normalized [11] with respect to ev-
ery reference image,Ri, represented asNIi. Subsequently,LoG
responses ofNIi are collected to construct2N features per pix-
els, where the firstN features are from the normalized color space,
and the lastN features areLoG response on the normalized im-
age. Let (i)fk(p) be kth feature of nodep; (ii) α be the weight
of LoG response; (iii)pk

i be the probability function offk of re-
gion i with i = 0 : background; i = 1 : nuclei; (iv) p

k
i (p) =

GMMk
i (p)

∑

1

j=0
GMMk

j
(p)

; and (v)λk be the weight forRi: λk = hist(Rk) ·

hist(NIk)/(||hist(Rk)||||hist(NIk)||). Wherehist(·) is the his-
togram function,Rk is thekth reference image,NIk is the normal-
ized input ImageI with respect toRk. Then the global fitness term
is defined as,

Egf (xp = i) = −

N
∑

k=1

λklog(pk
i (fk(p))) (2)

−α ·
2N
∑

k=N+1

λk−N log(pk
i (fk(p)))

Where the first and second terms integrate normalized color features
andLoG responses, respectively.



(a) (b)

Fig. 3. (a) An example of our seeds detection result. Green seeds
represent the nuclei, and blue seeds represent the background; (b)
LoG responses can be either positive (e.g., potential background) or
negative (e.g., foreground or part of foreground) in the transformed
blue ratio image. The threshold is set at the minimum intensity in
the blue ratio image, which has the most negative LoG response.

3.2.2. Local Fitness Term

While global fitness term utilizes both color andLoG information
in the normalized color space, it does not utilize information in the
original color space of the input image. As a result, local variation
may be lost, i.e., nuclei having a wide range of chromatin content.
The local data fitness is computed as follows:

I) Seeds detection: This step aims to collect local nuclei/background
seeds. It incorporates local and global image statistics for improved
seed detection. A typical end result is shown in Figure 3(a).The
protocol consists of two steps:

1. Detect Seeds: Apply theLoG filter(with scaleσ) on blue ra-
tio image, detect peaks, and construct a distribution of blue
ratio intensity at the peaks corresponding to the negative and
positive LoG responses. A small subset of seeds can be mis-
labeled, where some can be corrected in the following steps.

2. Refine seeds: Filtering of seeds (e.g., peaks of the LoG
response) are constrained by three criteria: (i) the LoG re-
sponses must be above a minimum conservative threshold for
removing strictly noisy artifacts; (ii) the intensity associated
with the peak of the negative LoG responses (e.g., foreground
peaks) must concur with the background threshold that is es-
tablished in Section 3.1; and (iii) within a small neighborhood
of w ×w, the negative LoG response with the minimum blue
ratio, is set as a threshold for background peaks, as shown in
Figure 3(b).

II) Local Nuclei/Background color modeling: For each pixel, p,
a local neighborhood is represented by two Gaussian MixtureMod-
els in the original color space. The GMM model is computed from
the LoG seeds that are detected in a local neighborhood around p.

The local fitness term is defined as:

Elf (xp = i) = −log(pi(f(p))) (3)

wheref(p) refers toRGB feature of nodep in the original color
space, andpi is the probability function off of regioni (here,i =

0 : background; i = 1 : nuclei), andpi(p) = GMMi(p)
∑

1

j=0
GMMj(p)

3.2.3. Smoothness Term

In order to utilize the gradient information of nuclear boundaries,
we adopt the setup from [12], in which the n-links are specifically
designed to carry the geodesic information of the input image. Taken
a 2D image grid as an example, as shown in Figure 4, the n-link edge
weight forkth family of edge line at nodep will be:

wk(p) =
δ2 · |ek|

2 · ∆φk · detD(p)

2 · (eT
k · D(p) · ek)

3

2

(4)

(a) (b)

Fig. 4. (a) Eight-neighborhood 2D grid. (b) One family of lines.

Fig. 5. An example of reference images with manual annotation
overlaid as green contours.

where,ek is the kth vector in the neighborhood system,δ is the
cell-size of the grid,△φk is the angular difference between thekth

and(k + 1)th edge lines,△φk = φk+1 − φk, andD(p) is a metric
continuously varying over pointsp in a 2D Riemannian space, which
is defined as:

D(p) = g(|∇I |) · I + (1 − g(|∇I |)) · u · uT (5)

whereu = ∇I
|∇I|

is a unit vector in the direction of image gradient at

pointp, I is the identity matrix, andg(x) = exp(− x2

2σ2 )

Edge Weight For

p → S Egf (xp = 1) + Elf (xp = 1) p ∈ P
p → T Egf (xp = 0) + Elf (xp = 0) p ∈ P

we(p, q) wk(p)
{p, q} ∈ N,
φ−→pq ∈ {φk, π + φk}

Table 1. Edge weights for the graph construction, whereN is the
neighborhood system.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to capture the technical variation, we manually selected and
annotated 20 GBM samples(20X), as reference images from TCGA
repository. Each sample is a 1k-by-1k block, and an example is
shown in Figure 5. For each input image(20X), to be segmented,
only topM = 10 reference images with highestλ were used. The
number of components forGMM was fixed to be 20, and other pa-
rameter settings were:α = 0.1, β = 10.0, γ = 0.1, µ = 10.0,
σ = 4.0 andw = 100, in whichσ was determined based on the pre-
ferred dimensions of malignant and normal nuclear size at 20X, and
all other parameters were selected to minimize the cross validation
error. Two-fold validation was applied on the reference images, and
comparisons of average classification performance and segmentation
performance were made between our current approach(MRGC) and



Fig. 6. Row 1: Original images; Row 2: Classification results via
MRGC; Row 3: Nuclear partition results via geometric reasoning.

Approach Precision Recall

MRGC 0.79 0.78
Previous Approach 0.78 0.65

Table 2. Comparison of average classification performance between
MRGC, and previous approach [13].

our previous approach [13], as shown in Table 2 and Table 3, respec-
tively. Having evaluated performance of the system, we applied our
method to a large dataset containing 440 GBM tissue sectionswhich
are typically 40k-by-40k pixels or larger, and the results were used
for integrated analysis [14]. Figure 6 shows some snapshotsof the
classification and segmentation results; the complete results for all
the GBM tissue sections are available at: http://tcga.lbl.gov

5. CONCLUSION AND FUTURE WORK

We have developed a novel approach for segmenting nuclei inH&E
tissue sections. Our approach addresses the problem of technical
and biological variations by utilizing both global information from
the manually annotated reference images, and the local informa-
tion from the original color space of the target image. The im-
posed geodesic constrain helps to improve the accuracy of the nu-
clear boundary. The experimental results demonstrate the effective-
ness of our approach. Our future work will focus on improvingthe
nuclear partition algorithm by incorporating nuclear shape model.
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